微资讯!环境友好型红外材料,检测降解抗生素只需一点阳光

首页 > 科技 > > 正文

日期:2022-06-29 08:31:27    来源:科技日报    

科技日报记者 王延斌

由于抗生素生物可降解性低,并且人们日常生活中对药物经常处理不当,大约80%以上的抗生素会在环境中累积。例如,作为一种广谱抗生素,“氯化小檗碱”因为具有优良的抗菌性和较低的副作用而被广泛应用,但当前很多技术难以同时检测并降解此类抗生素。


【资料图】

近日,山东大学化学与化工学院刘鸿志教授课题组制备了一种有机—无机杂化的倍半硅氧烷基近红外多孔聚合物,该新材料可同时实现对氯化小檗碱的检测、降解两大功能,这使其在环保领域展示出潜在应用价值。

上述成果发表于美国化学学会旗下的《可持续化学与工程》杂志并入选封面文章。

新材料可同时检测降解抗生素

抗生素是人类医学史上最伟大的发现之一,提高了人类对抗细菌感染的能力。但滥用抗生素已严重威胁人类健康并对环境造成了污染。探索如何有效检测和去除环境中的抗生素已成为当前环保领域研究的热点,同时也是难点之一。

为清除污水中的抗生素以及其他有机污染物,科学家们运用了各种方法,包括絮凝、膜过滤、吸附、化学氧化以及生物降解等。但这些方法具有技术难度大、处理成本高、步骤繁琐和易出现“二次污染”等弊端。

为克服上述弊端,科学家们一直在探索更为先进的处理技术,如:光催化技术、湿式氧化技术、超声波技术、超临界氧化技术等。在这些技术中,光催化技术被认为是最具吸引力的技术之一,因为其利用光能来催化降解污染物,不引入新的污染物,无二次污染,而且材料可以多次重复利用。如今刘鸿志教授课题组的研究成果进一步丰富了光催化材料。

“该红外半导体发光材料的激发带与抗生素的紫外吸收带相重合,由于内滤效应,可以实现对抗生素进行检测;同时,这种红外半导体发光材料能够在水中产生过氧自由基(O2-)和空穴(h+),它们可以与抗生素产生作用,进而发生开环等一系列反应,最终将抗生素降解生成二氧化碳和水。”刘鸿志说。

集多种材料优势于一身

当前,近红外发光材料在组成上大致分为两种:无机材料,如金属氧化物和半导体纳米晶体,但“价格贵,难以加工和后修饰”是其致命弱点。有机材料,包括金属配合物和染料等,根据发光机制可以分为有机近红外荧光材料和有机近红外磷光材料。其中,有机近红外荧光材料具有较高的摩尔消光/吸光系数和荧光量子产率,并且分子结构灵活易调、价格低廉。但这一材料仍存在一些亟待解决的共性科学问题,例如,其只有较低的热稳定性、力学稳定性、荧光量子效率,并且耐光漂白性差。

为了解决无机近红外材料的可加工性和有机近红外材料的稳定性问题,科学家们开始制备有机—无机杂化近红外材料。即通过添加无机粒子进行掺杂来克服有机近红外材料的缺点。比如,掺杂二氧化硅的有机近红外材料可表现出更高的亮度和光稳定性。然而,嵌入的有机近红外分子容易从二氧化硅基体中泄漏,稳定性差,阻碍了其应用。

“通过分子设计,我们制备了一种噻吩桥联咔唑吡喃型有机近红外分子,它是具有超共轭‘D-π-A-π-D’结构的有机半导体。”刘鸿志告诉记者,“然而,这种有机近红外分子的机械强度和热稳定性差、亮度低、光稳定性差,严重制约了其应用。为此,我们利用倍半硅氧烷对其进行化学改性来制备有机—无机杂化的倍半硅氧烷基近红外多孔聚合物,实现了分子水平复合,解决了有机近红外分子存在的上述问题,同时解决了物理共混中有机染料容易从二氧化硅基体中泄漏的问题。”

为环境治理提供新思路

刘鸿志认为,有机—无机杂化的倍半硅氧烷基近红外多孔聚合物具有可预见的优异综合性能和广泛的应用前景,“它可以无损快速检测重金属离子、硝基化合物、染料以及抗生素等微量污染物;此外,这类材料还可以实现对污染物的光降解,可直接利用太阳光进行激发,无需外加光源,高效、简洁,发出的近红外光对生命体无害,环境友好,可以循环使用,为环境治理提供了新的思路,有望获得实际应用。”刘鸿志说。

不过,技术是不断完善发展的,任何看似“完美”的材料也有瑕疵。

在众多处理水中污染物的方法中,光催化技术极具优势,但当前相关的光催化技术或材料仍存在一些问题,比如材料合成难度大、成本高、光能利用率低,难以同时降解不同类型污染物。因此,刘鸿志说:“开发高效、绿色、可回收的近红外光材料用于检测和降解污染物具有重要的科学价值,而获得紧凑、高效和低成本的近红外材料是实现其广泛应用的关键因素。”他呼吁科学家和产业界加强合作,在揭示材料结构—性能关系基础上,设计开发新型近红外发光材料,加强材料制备工艺研究,拓宽应用场景,加快推动商业化应用。

相关链接

光催化材料治污潜力大

光催化材料是指在光的作用下可发生光化学反应的一类半导体催化剂材料。世界上能作为光催化材料的有很多,包括二氧化钛、氧化锌、氧化锡、二氧化锆、硫化镉等多种氧化物、硫化物半导体。早期,世界各国曾经较多使用硫化镉和氧化锌作为光催化材料,但是由于这两者的化学性质不稳定,会在光催化的同时发生光溶解,溶出有害的金属离子,具有一定的生物毒性,故发达国家已经很少将它们作为民用光催化材料,部分工业光催化领域还在使用。此后,二氧化钛因其氧化能力强、催化活性高、稳定性好等优势一直处于光催化研究的核心地位。

如今许多专家认为纳米氧化亚铜在光催化降解有机污染物方面有很好的应用前景,有望成为继二氧化钛之后的新一代的半导体光催化剂。纳米氧化亚铜化学性质较稳定,在日光作用下具有很强的氧化能力,可使水中有机污染物完全氧化生成二氧化碳和水。因此,纳米氧化亚铜比较适合于各种染料废水的深度处理。研究人员已经用纳米氧化亚铜光催化降解亚甲基蓝等,取得了较好的效果。

关键词: 环境友好型

下一篇:今日最新!当前我国防汛抗旱四大关注点解析——访水利部水旱灾害防御司司长
上一篇:天天即时:可对生物靶标群起而攻之,智能DNA分子纳米机器人模型来了

科技